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1. Introduction 

This study focuses on the measurement of non-spherical drops using the time-shift technique. 

Non-spherical drops arise in many applications, but are generally more predominant with larger 

drops, since surface tension insures that small drops rapidly become and remain spherical. 

Difficulties arise in optically measuring the size of non-spherical drops, whereby the 

measurement error depends strongly on the measurement principle and measurement technique 

used. Reviews of available optical techniques for drop/spray characterization are available [3], 

[6]; however, the issue of non-sphericity has seldom been comprehensively or systematically 

investigated for any single technique. For certain techniques, in particular the phase Doppler 

technique, the influence of non-sphericity has been qualitatively characterized for certain drop 

alignments [7], [17], and optical configurations have been devised to recognize drop non-

sphericity, eliminating these values from further statistical analysis, because of the resulting 

erroneous size measurement [4]. This approach is typically known as 'sphericity validation'. 

While direct drop imaging detects non-sphericity, it has the obvious disadvantage of only 

capturing the projection of drops onto an imaging plane, which for non-spherical drops may also 

yield erroneous size estimates. The difficulty with eliminating non-spherical drops from 

statistical ensembles is that especially the large drops often make up a large fraction of the spray 

mass/volume, which in many applications is the most desired quantity, i.e. the local 

volume/mass flux density. Thus, any method to measure the size of non-spherical drops is 

welcome, if the expected accuracy can also be estimated. 

The present contribution addresses the issue of non-sphericity in drop sizing using the time-shift 

technique. The reason for concentrating on the time-shift technique is that there is reasonable 

grounds to assume that the time-shift technique will exhibit lower errors when measuring non-

spherical drops than other optical techniques. The time-shift technique uses a highly focused 

Gaussian beam to separate different scattering orders during passage of a drop/particle through 

the beam, typically detecting light in the near backscatter direction. Comprehensive descriptions 
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of this technique can be found in [11], [17], [20], and these will not be repeated in the present 

contribution. 

One of the complicating factors when examining response of optical techniques to drop non-

sphericity is that compared to spherical drops, now also the orientation of the drop with respect 

to the optical axis and detector must be considered. In any case, to examine sensitivity and 

response of optical techniques to non-sphericity, one pre-requisite is to compute light scattered 

from non-spherical drops. This has been achieved analytically and numerically for numerous 

special cases and with definite measurement techniques in mind [9], [13], [14], [15]; however, 

most approaches rapidly reach computational unfeasible limits for larger drops, exactly the ones 

that are to be expected to be non-spherical. For this reason, the method of choice in the present 

study is to use ray tracing, i.e. geometrical optics. The condition for this geometrical optics is 

valid is that the drop is significantly larger than the wavelength of the light being used.  

The next section describes the computational approach, including validation by comparison to 

analytic solutions. A section follows in which the signal generation of the time-shift technique is 

simulated, whereby the response and sensitivity of the technique to non-sphericity will be 

quantified. The final section summarizes the measurement accuracy of certain statistical 

quantities when measuring sprays containing non-spherical drops.  

2. Computational Procedure  

2.1. Description of the laser beam 

When describing the laser beam incident on the drop, characteristics typical of a time-shift 

instrument have been used, for instance the SpraySpy instrument from AOM-Systems [1]. In this 

case, the laser beam has a beam waist of 1 mm in the X direction and 10 μm in the Y direction, 

the Z direction being the direction of laser beam propagation. Such a non-circular Gaussian 

beam (light sheet) is used to improve the directional sensitivity of the instrument, as described in 

[20]. This non-circular Gaussian beam is treated as a bundle of rays, each ray being defined by its 

starting point, propagation direction, and the initial amplitude of the electric field E0. The 

starting points of the large number of beams used in the simulation are randomly distributed in 

space. This is similar to the approach used in [18] and experience confirms that convergence of 

the computed light scattering diagrams is achieved with much fewer rays than if a regular grid 

spacing is used for the starting points. Fig. 1 illustrates exemplarily the starting points of such a 

beam, showing the transverse plane of rays for the focused non-circular Gaussian beam. 
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Fig. 1: Randomly generated starting points for the ray tracing 

For a non-circular Gaussian laser beam, the complex amplitude can be described as [19]: 

𝐸(𝒓, 𝑧) = 𝐸0(𝑧) 𝑒𝑥𝑝 [−𝑖𝜙𝑎𝑐 + 𝑖𝜂(𝑧) − 𝑖𝑘 (
𝑥2

2𝑞1(𝑧)
+

𝑦2

2𝑞2(𝑧)
)] (1) 

Where the 𝜙𝑎𝑐 is the phase accumulated from the chosen reference point. r is the transversal 

vector, which is a function of (x, y); the Gouy phase 𝜂(𝑧)  is the average of the two phase of 

symmetry, and the q parameter could be obtained from the following equation [16]: 

1

𝑞𝑛(𝑧)
=

1

𝑅(𝑧)
− 𝑖

𝜆

𝜋𝜔𝑛
2(𝑧)

, 𝑛 = 1,2 (2) 

where 𝑤𝑖 is the principle semi-axes of the elliptical beam and R(z) is the principle radii of 

curvature of the wavefront. The Gouy phase is given by [2] 

𝜂(𝑧) =
1

2
 [𝑡𝑎𝑛−1 (

𝑧 − 𝑧01

𝑧𝑅1
) + 𝑡𝑎𝑛−1 (

𝑧 − 𝑧02

𝑧𝑅2
)] (3) 

where 𝑧01 is the position of beam waist in Z direction and 𝑍𝑅1 is the Rayleigh Range. 

In the time-shift signal different scattering orders are separated in time, so interference will not 

be considered. Hence, it is not necessary to follow the phase of each ray; however, the 

polarization must be accounted for, since the polarization influences the beam transmission at 

each interface (Fresnel equations[8]). Since the size of the drop is much smaller than the beam 

waist in the X direction, the amplitude of the rays which are incident on the drop are treated as 

constant in the X direction.  

2.2. Description of the arbitrary spheroid in space 

The primary coordinate system is centered at the beam waist and aligned such that the Z-axis is 

in the beam propagation direction; polarization is with respect to the X-axis (s polarization). The 

drop is a spheroid (ellipsoid of revolution), given by: 

(𝑥 − 𝑥0)
2

𝑎2
+

(𝑦 − 𝑦0)
2

𝑏2
+

(𝑧 − 𝑧0)
2

𝑐2
= 1 (4) 

Where (𝑥0, 𝑦0, 𝑧0) are the coordinates of the drop with respect to the center of the Gaussian beam 

waist. However, in the present study the drop can also be arbitrarily orientated when passing 

through the laser beam. The particle rotation is achieved using the Euler rotation theorem, by 

which the rotation can be described using three angles. There are several variations of this matrix 

and the so-called ZXZ rotation is used in this study. A right-handed coordinate system with a 
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positive angle to represent any right-handed rotation is used. Rotations are first performed 

around the Z-axis through an angle Ѱ, then around the (rotated) 𝑋′-axis of the body through an 

angle β, and finally around the 𝑍′-axis of the body through an angle α. After performing the 

rotations, the entire body is translated. The body rotation of the spheroid is depicted in Fig. 2. 

 

Fig. 2: Orientation of droplet after the ZXZ rotation. 

If (𝑥′, 𝑦′, 𝑧′) are the coordinates of a particular point prior to rotation and translation, and (x, y, z) 

are the coordinates of the point after rotation and translation, then the following relations hold:  

(
𝑥′

𝑦′

𝑧′

) = 𝑅𝑧(−𝛼)𝑅𝑥(−𝛽)𝑅𝑧(−Ѱ)(
𝑥 − 𝑥0
𝑦 − 𝑧0
𝑧 − 𝑧0

) (5) 

where: 

𝑅𝑧(Ѱ) = (
𝑐𝑜𝑠 Ѱ −𝑠𝑖𝑛 Ѱ 0
𝑠𝑖𝑛Ѱ 𝑐𝑜𝑠 Ѱ 0

0 0 1
) (6) 

𝑅𝑥(𝛽) = (
1 0 0
0 𝑐𝑜𝑠 𝛽 − 𝑠𝑖𝑛 𝛽
0 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽

) (7) 

𝑅𝑧(𝛼) = (
𝑐𝑜𝑠 𝛼 − 𝑠𝑖𝑛 𝛼 0
𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 0

0 0 1
) (8) 

Substituting Eq. (5) in the Eq. (4), then the spheroid in space is given by: 

[(𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 Ѱ − 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 Ѱ)(𝑥 − 𝑥0) + (− 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 Ѱ − 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 Ѱ)(𝑦 − 𝑦0) + 𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 𝛽 (𝑧 − 𝑧0)]
2

𝑎2
+

[(𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 Ѱ + 𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 Ѱ)(𝑥 − 𝑥0) + (−𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 Ѱ + 𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 Ѱ)(𝑦 − 𝑦0) − 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛽 (𝑧 − 𝑧0)]
2

𝑏2
+

[(𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 Ѱ)(𝑥 − 𝑥0) + (𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 Ѱ)(𝑦 − 𝑦0) + 𝑐𝑜𝑠 𝛽 (𝑧 − 𝑧0)]
2

𝑐2
= 1 (9)

 

2.3. Ray tracing algorithm and validation 

The ray tracing algorithm first checks whether a given ray intersects the drop and if so, the 

intersection point on the drop surface is calculated. The direction of the reflected ray and 

refracted ray at each interface intersection is computed using Snell’s law and the amplitude of 
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the electric field is given by the Fresnel equations for the reflected and refracted (transmitted) 

rays [8]. For each ray, the computation for one scattering order is followed by the computation 

for the next scattering order, based on the computational results up to that stage. This process is 

repeated until the computation for a specified number of scattering orders of all rays is complete. 

The information of all rays is saved. To compute a scattering diagram, a point detector, defined 

using a solid scattering angle of 0.0029 sr, is traced through 0 to 180°. At each position the 

intensity of the scattered light (Eq. (10)) is given as the sum over the intensity of all rays falling 

onto the detector (Eq.(11)). 

𝐼𝑘 =
𝑐

2
|𝑬|2 (10) 

𝐼𝑡𝑜𝑡𝑎𝑙(𝜃𝑖 , 𝜑𝑗) = ∑ 𝐼𝑘

𝑛

𝑘=1

(11) 

To validate the code, simulation results for a plane wave have been compared with the known 

Lorenz-Mie solution [10] for a transparent drop of relative refractive index m. As an example 

result, Fig. 3 illustrates the scattering diagram of the first five scattering orders for a 100μm drop, 

compared with the results from a Lorenz-Mie computation, invoking also a Debye series 

decomposition [5] to examine the agreement between individual scattering orders. The 

agreement is good, exhibiting the expected deviations arising from the geometric optics 

approach of ray tracing: the interference phenomena in the rainbows are not captured and 

neither is the effect of surface waves, evident especially in the scattering of first-order refraction 

at angles beyond about 85 degrees. Diffraction in forward scatter is not included in the ray 

tracing algorithm. Nevertheless, the ray tracing exhibits very good agreement for the first three 

scattering orders and is suitable for analyzing the signal generation of the time-shift technique. 

 

Fig. 3: Comparison between Lorenz-Mie theory with Debye series decomposition (solid lines) 

and ray tracing (dashed lines): drop diameter d=100μm, nt=1.343 
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3. The time-shift technique and signal generation 

The time-shift technique, also known as the pulsed-displacement technique, is a method to 

measure size, velocity, and relative refractive index (m) of spherical particles. As Figure 4 

illustrates, a detector placed in the backscatter direction (e.g. 150°) will register a time dependent 

signal comprising several peaks, corresponding to the different scattering orders as a transparent 

drop passes through a shaped beam. Details about the measurement principle and optical design 

can be found in [20]. 

 

Figure 4: Principle of time-shift measurement technique [20]. p designates the scattering order, 

according to how many paths occur internal to the drop [20]. s expresses the angle of the 

incident point for each scattering order. 

To compute the signal arising from the passage of a drop through the focused beam of a time-

shift instrument, first a drop position is specified and the light scattered onto a defined detector 

(position and size) is computed. With a given velocity, the drop is then displaced in flight 

direction by a step time of Δt and the computation is repeated. The intensity collected on the 

detector of diameter d for each drop position is converted into a time signal using the prescribed 

drop velocity vz. To obtain the time-shift signal, the light scattering of all drop positions in which 

incident rays intersect with the drop need to be computed. The time-shift signal, illustrated in 

Figure 4 for detectors placed on either side of the illuminated laser sheet, comprises three main 

peaks; one arising from reflected light (p=0) and one each from the two modes of second-order 

refraction (p=2.1, p=2.2). 

To understand the signal generation from an ellipsoidal droplet, the incident and exit angle 

ranges through which a ray passes to fall onto a prescribed detector is analyzed for reflected and 
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second-order refracted light. These angle ranges will be used to interpret the loss or overlap of 

signal peaks in the following section.  

For reflection, the incident and glare points on the surface of the drop are coincident. The glare 

region which a finite size detector sees on the drop is computed by traversing a point detector 

over the real detector area. The point detector has the coordinate (0, yd, zd). Figure 5a 

illustrates the ray path when a reflected ray is incident on the point detector. 

a  b  

Figure 5: Ray paths for a point detector: a) reflection; b) second-order refraction 

To reach the point detector Eq. (12) should be satisfied, where 𝑙𝑖⃗⃗  and 𝑙𝑟⃗⃗   represent the incident 

and the reflected ray vectors, and �⃗�  is the normal vector at the incident/glare point (0, 𝑦0, 𝑧0) 

and can be calculated as ∇𝑓(0 𝑦0 𝑧0)/|𝑓|;  where f is surface of the ellipsoid. 

|𝑙𝑖⃗⃗ ∙ �⃗� |

‖𝑙𝑖⃗⃗ ‖ ∗ ‖�⃗� ‖
=

|𝑙𝑟⃗⃗  ∙ �⃗� |

‖𝑙𝑟⃗⃗  ‖ ∗ ‖�⃗� ‖
(12) 

Substituting expressions for each of the variables in equation (12) yields the following relations:  

|−𝜂 ∗ 𝑐𝑜𝑠 𝜃1| = |
− 𝑠𝑖𝑛 𝜃1 ∗ (𝑦𝑑 + 𝜂 ∗ 𝑏 ∗ 𝑠𝑖𝑛 𝜃1) − 𝜂 ∗ 𝑐𝑜𝑠 𝜃1 ∗ (𝑧𝑑 + 𝑎 ∗ 𝑐𝑜𝑠 𝜃1)

√(𝑦𝑑 + 𝜂 ∗ 𝑏 ∗ 𝑠𝑖𝑛 𝜃1)2 + (𝑧𝑑 + 𝑎 ∗ 𝑐𝑜𝑠 𝜃1)2
| (13) 

Where, η is the aspect ratio = b/a. This equation can be solved for the eccentric anomaly angle 

𝜃1 , the angle correspondent to the incident/glare point. 

To compute the glare point region for scattering by second-order refraction, the relationship 

between the angle incident 𝜃in and exit 𝜃out angles, illustrated in Figure 5b, has been computed 

by using the Eqs. (14) - (19) [12]: 

𝐿01 =
1

𝑚
[𝐿0 − (𝐿0 ∙ 𝑛𝐴)𝑛𝐴] − √1 −

1

𝑚2
+

1

𝑚2
(𝐿0 ∙ 𝑛𝐴)2 ∙ 𝑛𝐴 (14) 

𝑀2 =

𝑦0

𝑏2 +
𝑝0

𝑛0

𝑧0

𝑐2

1
𝑏2 +

𝑝0
2

𝑛0
2

1
𝑐2

(15) 
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{

𝑥2 = 𝑥0,
𝑦2 = 𝑦0 − 2 ∗ 𝑀2

𝑧2 = 𝑧0 − 2 ∗ 𝑀2 ∗
𝑝0

𝑛0

(16) 

𝐿12 = 𝐿01 − 2 ∗ (𝐿01 ∙ 𝑛𝐵)𝑛𝐵 (17) 

𝐿2 = 𝑚[𝐿12 − (𝐿12 ∙ 𝑛𝐶)𝑛𝐶] + √1 − 𝑚2 + 𝑚2(𝐿12 ∙ 𝑛𝐶)2 ∙ 𝑛𝐶 (18) 

𝜃𝑜𝑢𝑡 = 𝑐𝑜𝑠−1(𝐿2 ∙ [0 0 − 1]) (19) 

Where 𝑝0 and 𝑛0 are the elements of the direction vector in y and z-axis in the Cartesian 
coordinate system. 

4. Simulation results 

4.1. Simulated time-shift signals 

In the following simulations of the time-shift signal for an ellipsoidal droplet, the volume of the 

droplet has been kept constant at the volume of a 100 µm drop; the aspect ratio has been varied 

among the values = 0.9, 1.0 and 1.1 and the relative refractive index has taken the values m = 

1.33, 1.36 and 1.40.  

In Figure 6, the left diagram presents the simulated time shift-signal for different relative 

refractive indexes and the right diagram shows the relationship between the exit angle of 

second-order refraction scattering and  the corresponding incident angle, when the aspect ratio is 

0.9 (Eq. (19)). The red dashed line and the green dashed line represent the upper and lower exit 

angle range for which reflective light will fall onto the detector. Only when the exit angle of the 

second-order refraction scattering is in the angle range between the green dashed line and red 

dashed line, will the exit ray be incident on the detector. When the refractive index is 1.33, the 

incident angle range for second-order refraction scattering results in two, well-separated regions 

for the incident angle, yielding also two well-separated peaks in the time-shift signal. These two 

peaks correspond to the p = 2.1 and 2.2 modes respectively. For the relative refractive index of 

1.36 and 1.40 the incident angle for the p = 2.1 and 2.2 modes does not exhibit distinct ranges and 

the peaks in the time-shift signal for these modes overlap with each other, as seen in the left 

diagram of Figure 6. 
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Figure 6: Left - simulated time-shift signal for different relative refractive indexes; Right - 

relationship between incident angle and exit angle of second-order refractive scattering, for an 

aspect ratio of 0.9. (RI stands for refractive index) 

From Figure 7, computed for an aspect ratio of 1.0, the two signal peaks corresponding to 

second-order refractive scattering are distinct for all relative refractive indexes.  

 

Figure 7: Left - simulated time-shift signal for different relative refractive indexes; Right - 

relationship between incident angle and exit angle of second-order refractive scattering, for an 

aspect ratio of 1.0. (RI stands for refractive index) 

For the aspect ratio 1.1, shown in Figure 8, the incident angle range for the mode p = 2.2 and for 

the relative refractive indexes 1.40 is larger than the angle range for m = 1.36. For the relative 

refractive index 1.33, no angle range for mode p =2.2 exists, which means the time-shift signal for 

the mode p =2.2 does not exist and no respective peak appears in the signal (left diagram in 

Figure 8. 
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Figure 8: Left - simulated time-shift signal for different relative refractive indexes; Right - 

relationship between incident angle and exit angle of second-order refractive scattering, for an 

aspect ratio of 1.1. (RI stands for refractive index) 

4.2. Evaluation of the ellipsoid particle size  

For a typical time-shift signal, there are several ways to evaluate the particle size, as Figure 4 

illustrates. The particle size has been calculated with various time differences by using Eqs. (20-

21) derived in [20] and the evaluation results are tabulated in Table 1, as well as an average of 

the results from both evaluation methods. 

𝑑 = ∆𝑡00 ∗
𝑣𝑧

𝑐𝑜𝑠
𝜃𝑠

2

(20) 

𝑑 = ∆𝑡2121 ∗
𝑣𝑧

𝑠𝑖𝑛 𝜃𝑖
(𝑝=2.1)

(21) 

                 Rel. Refractive 
Aspect                    Index 
Ratio 

1.33 1.36 1.40 

b/a=0.9 

a=51.787 μm 

b=46.609 μm 

c=51.787 μm 

𝑑∆𝑡00
= 43.65 𝜇𝑚 

𝑑∆𝑡2121
= 64.52 𝜇𝑚 

𝑑∆𝑡00+𝑑∆𝑡2121

2
=54.085 μm 

𝑑∆𝑡00
= 40.77 𝜇𝑚 

𝑑∆𝑡2121
= 74.09 𝜇𝑚 

𝑑∆𝑡00+𝑑∆𝑡2121

2
=57.43 μm 

𝑑∆𝑡00
= 42.50 𝜇𝑚 

Signal for second order 
refraction scattering 

P=2.2 with P=2.1 overlap 
with each other 

b/a=1 

a=50 μm 

b=50 μm 

c=50 μm 

𝑑∆𝑡00
= 49.81 𝜇𝑚 

𝑑∆𝑡2121
= 50.57 𝜇𝑚 

𝑑∆𝑡00
+𝑑∆𝑡2121

2
=50.19 μm 

𝑑∆𝑡00
= 49.81 𝜇𝑚 

𝑑∆𝑡2121
= 50.73 𝜇𝑚 

𝑑∆𝑡00
+𝑑∆𝑡2121

2
=50.27 μm 

𝑑∆𝑡00
= 49.81 𝜇𝑚 

𝑑∆𝑡2121
= 50.74 𝜇𝑚 

𝑑∆𝑡00
+𝑑∆𝑡2121

2
=50.275 μm 

b/a=1.1 

a=48.436 μm 

b=53.28 μm 

c=48.436 μm 

𝑑∆𝑡00
= 60.83 𝜇𝑚 

𝑑∆𝑡2121
= 45.66 𝜇𝑚 

𝑑∆𝑡00+𝑑∆𝑡2121

2
=53.245 μm 

𝑑∆𝑡00
= 59.10 𝜇𝑚 

𝑑∆𝑡2121
= 44.31 𝜇𝑚 

𝑑∆𝑡00+𝑑∆𝑡2121

2
=51.705 μm 

𝑑∆𝑡00
= 56.80 𝜇𝑚 

𝑑∆𝑡2121
= 41.87 𝜇𝑚 

𝑑∆𝑡00+𝑑∆𝑡2121

2
=49.335 μm 

Table 1: Evaluation of the size of an ellipsoidal particle by using the simulated time-shift signal. 
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5. Discussion and Conclusions 

The results from Table 1 indicate that for spherical drops the time-shift technique yields good 

estimates of drop diameter independent of which time shift is used for computation. This fact 

can be exploited in two ways. First, size can be computed using the time difference from both 

reflection and second-order refraction and only if the two estimates agree within bounds, will 

the value be accepted; hence this is a spherical validation check. If the two values do not agree, 

this is an indication of non-sphericity. Second, if the drop is non-transparent or semi-transparent, 

such that signal peaks from second-order refraction are very weak, the size estimate from 

reflective scattering should be sufficient. 

However, the simulations indicate also that the time-shift signal is significantly affected by 

changing either the relative refractive index or the aspect ratio of an ellipsoidal drop. Quite 

generally, the deviation of the drop size calculated by using the time difference from the 

reflection scattering order (t00) exhibits a different sign compared with the deviation of the drop 

size calculated by using the time difference from second-order refractive scattering (t2121). This 

holds for all values of relative refractive index and aspect ratio investigated. Which of the two 

methods results in a positive or negative deviation depends on the aspect ratio. For oblate drops 

(b/a<1.0) the reflective estimate (t00) lies below the true value and for prolate drops (b/a>1.0) the 

estimate exceeds the true size. However, using a combination of both calculation methods, i.e. 

the average drop size, the simulation indicates that the size measurement is more robust against 

a change of the aspect ratio and the relative refractive index. For the present ranges of aspect 

ratio and relative refractive index investigated, the average diameter fell within 14% of the true 

volume equivalent diameter. 

Notable is the fact that for high values of relative refractive index and prolate drops, a size 

estimate cannot be made using second-order refraction, since the signal peak for p = 2.2 is 

missing. 

As outlined in the section 2, the computational procedure introduced in this study is capable of 

also treating ellipsoidal drops with arbitrary orientation with respect to the incident beam. The 

present results have focused only on cases in which the drop z-axis was aligned with the incident 

beam propagation direction. The next step in this study is to investigate the sensitivity of the 

time-shift technique to drop rotations. 
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