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Figure 1: Randomly generated starting points for the ray tracing. 
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Abstract 

This study is devoted to computing the light scattering from drops with an embedded, reflecting flake, as 

encountered with metallic paints. Such drops are typical in the automotive industry and a complete knowledge 

of scattering characteristics is a prerequisite to optically measuring the drop size and velocity and to determine 

whether the drop contains a flake or not. The light scattering is computed using a ray tracing method. Once the 

light scattering has been computed, this information can be used to simulate the response of specific instru-

ments. In the present case the signal generation of a time-shift instrument has been exemplary studied.  
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1. Introduction  

Atomization in the automotive paint industry must deal with a large variety of different paints, according to 

customer desires. Maintaining quality of the coating finish is therefore closely related to good control of atomi-

zation under varying conditions of viscosity, surface tension and pigment composition. Typical of automotive 

painting is a metallic finish, achieved using aluminium flakes dispersed into the paint. Upon atomization how-

ever, not all drops contain such flakes and there is considerable interest from industry to know what percentage 

of drops contain flakes and whether a correlation exists between size and flake presence. For this, a measure-

ment technique is required and the present study is motivated by the possibility of achieving such a measure-

ment using optical means. Thus, the goal is to measure not only size and velocity of individual drops in a spray, 

but also the existence of a reflecting aluminium flake. 

Attention is first directed towards computing the light scattered from such a drop with an embedded flake, 

since this capability is a pre-requisite to studying the response of any optical measurement instrument. Theoreti-

cal solutions of light scattering with such arbitrary boundary conditions (size and orientation of flake in the drop) 

are not available and any numerical approach such as the T-matrix [6] or FTDT methods [14] are severely lim-

ited to very small sizes. Therefore, in the present study, an approach based on ray tracing is adopted, similar to 

that used in [8][13]. In anticipation of using the light scattering results for studying instrument response, the 

incident light is considered to be a Gaussian beam, with the drop arbitrarily positioned within. Thus, each ray to 

be traced is characterised by a starting amplitude and direction. The phase of each ray is not preserved in this 

simulation of light scattering as in [15]; hence, interference effects cannot be reproduced. However, the polari-

zation is preserved, essential for capturing the intensity of the transmitted and reflected intensities at each inter-

face encountered on its path through the drop.  

Once the light scattering has been computed and verified by comparison to simpler situations offering theo-

retical solutions, the signal generation of a time-shift instrument is simulated. These synthetic signals, well de-

fined for given drop and flake characteristics (size, position, orientation, refractive index), can be used to devise 

suitable signal processing algorithms for flake detection for this instrument. This simulation of light scattering is 

not suitable to reproduce signals as would be expected from a phase Doppler interferometer, since the phase of 

each ray is not computed. 

2. Description of the laser beam 

Already upon defining the incident beam, 

characteristics typical of a time-shift instru-

ment have been used, for instance the Spray-

Spy instrument from AOM-Systems [2]. In 

this case the laser beam has a beam waist of 1 

mm in the X direction and a beam waist of 10 

um in the Y direction. Such a non-circular 

Gaussian beam (light sheet) is used to im-
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prove the directional sensitivity of the instrument, as described in [1]. This non-circular Gaussian beam is treat-

ed as a bundle of rays. The properties of each ray are first specified, such as the starting point, propagation di-

rection, and the initial amplitude of the electric field E0. The starting points of the large number of beams used 

in the simulation are randomly distributed in space. This is similar to the approach used in [13] and experience 

confirms that convergence of the computed light scattering diagrams is achieved with much fewer rays than if a 

regular grid spacing is used for the starting points. Figure 1 illustrates exemplarily the starting points of such a 

beam, showing the transverse plane of rays for the focussed non-circular Gaussian beam.  

For a non-circular Gaussian laser beam, the complex amplitude can be described as [11]. 

𝐸(𝒓, 𝑧) = 𝐸0(𝑧) 𝑒𝑥𝑝 [−𝑖𝜙𝑎𝑐 + 𝑖𝜂(𝑧) − 𝑖𝑘 (
𝑥2

2𝑞1(𝑧)
+

𝑦2

2𝑞2(𝑧)
)] (1) 

where 𝜙𝑎𝑐 is the phase accumulated from the chosen reference point. r is the transversal vector, which is a 

function of (x, y); the q parameter is obtained from the following equation [7]: 

1

𝑞𝑛(𝑧)
=

1

𝑅(𝑧)
− 𝑖

𝜆

𝜋𝜔𝑛
2(𝑧)

, 𝑛 = 1,2; (2) 

where 𝑤𝑖  is the principle semi-axis of the light spot ellipse and R(z) is the principle radii of curvature of the 

wavefront. The Gouy phase 𝜂(𝑧) can be expressed with the following equation [3]: 

𝜂(𝑧) =
1

2
 [𝑡𝑎𝑛−1 (

𝑧 − 𝑧01

𝑧𝑅1
) + 𝑡𝑎𝑛−1 (

𝑧 − 𝑧02

𝑧𝑅2
)] (3) 

where 𝑧01 is the position of beam waist in the X direction and 𝑍𝑅1 is the Rayleigh range.  

For the time shift technique, the measurement volume is in the Rayleigh range of the laser beam, so the propa-

gation direction for all initial rays will be treated as constant.  

3. Description of the drop and the embedded flake 

The physical properties of the drop, such as the refractive index nt and the radius R, are specified. For the 

simulation, the drop is treated as a sphere, which can be expressed as  

(𝑥 − 𝑥0)
2

𝑅2 +
(𝑦 − 𝑦0)

2

𝑅2 +
(𝑧 − 𝑧0)

2

𝑅2 = 1 (4) 

whereby the coordinate system is pictured in Figure 2. A flake inside the drop 

is treated as a flat disc, with the flake center at some (x, y, z) coordinate, with 

radius r and the surface normal �⃗� . The surface normal is a vector with the 

zenith angle α and azimuthal angle β also shown in Figure 2. Using the zenith 

and azimuthal angles, the normal vector of the flake can be described as [9]:

�⃗� = (
𝑛1
𝑛2
𝑛3

) = (

𝒆𝒙 ∙ 𝑛1
𝒆𝒚 ∙ 𝑛2

𝒆𝒛 ∙ 𝑛3
) = (

𝑠𝑖𝑛 𝛼 ∙ 𝑐𝑜𝑠 𝛽
𝑠𝑖𝑛 𝛼 ∙ 𝑠𝑖𝑛 𝛽

𝑐𝑜𝑠 𝛼

) (5) 

4. Ray tracing algorithm and validation 

For the present study the ray tracing algorithm first checks 

whether a given ray intersects with the drop. The incident beam is non-circular and Gaussian and the drop can be 

arbitrarily placed in the ray, so an intersection does not always occur. If however the ray intersects the drop, then 

the intersection point on the drop surface is calculated. The direction of the reflected ray and refracted ray at 

each interface intersection is computed using Snell’s law and the amplitude of the electric field is given by the 

Fresnel equations for the reflected and refracted (transmitted) rays [5]. For each ray, the computation for one 

scattering order is followed by the computation for the next scattering order, based on the computational results 

up to that stage. This process is repeated until the computation for all scattering orders of all rays is complete. 

The information of all rays is saved. To compute a scattering diagram a point detector, defined using a solid 

scattering angle of 0.0029 sr, is traced through 0 to 180°. At each position, the intensity of the scattered light 

(Eq. (6)) is given as the sum over the intensity of all rays falling onto the detector (Eq. (7)) [13]:  

𝐼𝑘 =
𝑐

2
|𝑬|2 (6) 

Figure 2: Description of the normal vector 

of the flake in Cartesian coordinate system. 
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𝐼𝑡𝑜𝑡𝑎𝑙(𝜃𝑖 , 𝜑𝑗) = ∑ 𝐼𝑘

𝑚

𝑘=1

(7) 

To validate the code, simulation results for a plane wave have been compared with the known Lorenz-Mie 

solution [10]. The drop is a transparent drop of relative refractive index m and no flake is present. As an example 

validation, Figure 3 illustrates the scattering diagram of the first five scattering orders for a 50μm drop, com-

pared with the results from a Lorenz-Mie computation, invoking also a Debye series decomposition [4] to exam-

ine the agreement between individual scattering orders. In general the agreement is good, exhibiting the ex-

pected deviations arising from the geometric optics approach of ray tracing. The interference phenomena in the 

rainbows is not captured and neither is the effect of surface waves captured, evident especially in the scattering 

of first-order refraction at angles beyond about 85 degrees. Diffraction in forward scatter is not included in the 

ray tracing algorithm. Nevertheless, the ray tracing exhibits very good agreement for the first three scattering 

orders and is suitable for analyzing the signal generation of the time-shift technique. 

 

Figure 3: Comparison between Lorenz-Mie theory with Debye series decomposition (solid lines) and ray tracing (dashed 

lines): drop diameter=100um, nt=1.343. 

Further validation is performed for the case of a flake embed-

ded in the drop. Such a circular flake (disk) is shown in Figure 4, in 

which the flake is centered in the drop and orientated parallel to the 

Y direction. In this study the flakes are perfectly reflecting disks of 

zero thickness. 

In such a position, rays transmitted into the drop will be 

blocked once the incident ray becomes too close to the Z-axis; 

hence, the forward scattering of the first scattering order will be 

affected. As Figure 5 shows in the scattering diagram for the first 

scattering order, part of the forward scattering is lost. This condi-

tion of blocking of the ray internally in the drop is parameterized 

using the angle of the incident ray at the initial intersection point, i, 

and the resulting exit angle of first-order refraction, b. Referring to 

the diagram shown in Figure 4, an explicit expression for the block-

ing angle b can be obtained and this angle is shown in Figure 5 as a dashed line:  

𝑟

𝑠𝑖𝑛 𝜃𝑡
=

𝑅

𝑠𝑖𝑛(0.5 ∗ 𝑝𝑖 + 𝑠𝑖𝑛−1(𝑠𝑖𝑛 𝜃𝑡 ∗ 𝑛𝑡) − 𝜃𝑡)
(8) 

𝜃𝑏 = 2 ∗ (𝜃𝑖 − 𝜃𝑡) (9) 

Note also in Figure 5 that with a flake, an additional contribution of first-order refraction appears in 

backscatter, i.e. for scattering angles large than about 150 deg. This corresponds to the rays which have been 

blocked and reflected from the surface of the flake. 

Figure 4: Disk positioned inside the drop can 

block the transmission of some rays: drop 

diameter=100um, flake diameter=60um, 

zenith angle α =0 deg, azimuthal angle β=0 

deg, nt=1.343. 
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Figure 5: First-order refraction scattering: comparison of Lorenz-Mie solution, ray tracing without flake, ray tracing with 

flake: drop diameter=100um, flake diameter=60um, zenith angle α =0 deg, azimuthal angle β =0 deg, nt =1.343, RT – Ray 

Tracing, DS – Debye Series 

5. The time-shift technique and signal generation 

The time-shift technique, which is also known as the pulsed-displacement technique, is a method to measure 

size, velocity, and relative refractive index (m) of spherical particles. As Figure 6 shows, a detector placed in the 

backscatter direction (e.g. 150°) will register a time dependent signal comprising several peaks, corresponding to 

the different scattering orders as a transparent particle passes through a shaped beam. Details about the meas-

urement principle and optical design can be found in [1][12].  

 
Figure 6: Principle of time-shift measurement technique [12]. p designates the scattering order, according to how many 

paths occur internal to the drop [12]. expresses the angle of the incident point for each scattering order. SW designates 

surface waves. 

To compute the signal arising from the passage of a drop through the focused beam of a time-shift instru-

ment, first a drop position is specified and the light scattered onto a defined detector (position and size) is com-

puted. The drop is then displaced in flight direction by a step distance of z and the computation is repeated. The 

intensity collected on the detector for each drop position is converted into a time signal using the prescribed drop 

velocity vz. To obtain the time-shift signal, the light scattering of all drop positions in which incident rays inter-

sect with the drop need to be computed. 

If a flake is embedded in the drop, then the ray tracing must account for reflection on the flake surface and 

continue computing the path of the reflected ray. This ray may also contribute to the final intensity collected on 

the detector. 

For validation of signal generation, simulations have been performed for the experimental results presented 

in [12] without a flake embedded in the drop. The essential information of the time-shift signal is not the signal 

amplitude, but the time difference or distance between the different signal peaks, arising from the different scat-

tering orders. Figure 7 shows a simulated time-shift signal. The distances between the different signal peaks 

were measured and the gamma coefficient [12], defined in Eq. (10), was calculated. Equation (10) yields for the 

simulated conditions a value of γ=2.12. The simulation yields a value of γ=2.06, confirming excellent agreement.  

∆𝑑2

∆𝑑1
=

[𝑐𝑜𝑠
𝜃𝑠

2
+ 𝑠𝑖𝑛 𝜃𝑖

(𝑝=2.2)
]

[𝑐𝑜𝑠
𝜃𝑠

2
+ 𝑠𝑖𝑛 𝜃𝑖

(𝑝=2.1)
]
= 𝛾 (10) 
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Figure 9: Comparison of the second-order refraction scattering (p=2) 

for the parameters: drop diameter=100um, flake diameter=60um, 

zenith angle α=0 deg, azimuthal angle β=0 deg, nt=1.343. RT – Ray 

Tracing, DS – Debye Series. 

 
Figure 7: Simulated time-shift signal for a transparent drop: θs=160 deg, d=100um, nt=1.36, z =0.03um. 

6. Results and Discussion 

After validation of the code, scattering di-

agrams for the drop with an embedded flake 

have been computed. To analyse the effect of 

the flake on the scattering diagram, the scat-

tered intensity has been normalized and plot-

ted together with the results without a flake 

and, additionally, compared to the Lorenz-Mie 

solution with Debye series decomposition. 

Such a comparison is shown in Figure 8 for 

the reflection scattering order. As expected, 

the embedded flake does not influence the 

scattering through reflection.  

A similar comparison for the same drop 

was given in Figure 5 for first-order refraction. 

The scattering diagram indicates that while 

some of the light in forward scatter is now 

blocked by the flake, additional light is scattered in the backward direction. This light comes from reflection off 

the surface of the flake.  

The same comparison is shown in Figure 9 

for scattering of second-order refraction. In 

this case, the high intensity of the rainbow is 

properly captured; however, additional light is 

now found in the forward direction, again 

coming from reflection off the surface of the 

flake, as depicted in Figure 10a. Comparing 

with the scattering when no flake exists, part 

of the backward scattering remains the same, 

this can be explained with Figure 10b. In Fig-

ure 10b, the black line with arrows represents 

the ray path inside the drop; the dashed line 

shows the imaginary ray path when the drop 

does not contain a flake. After two further 

internal reflections, it is evident that the ray 

path and the imaginary ray path share the 

same exit point and exit the drop with the same angle as for second-order scattering. The blocking angle for the 

second-order refraction scattering can be calculated with the following equations: 

𝑟

𝑠𝑖𝑛 𝜃𝑡
=

𝑅

𝑠𝑖𝑛(0.5 ∗ 𝑝𝑖 − 𝑠𝑖𝑛−1(𝑠𝑖𝑛 𝜃𝑡 ∗ 𝑛𝑡) + 3 ∗ 𝜃𝑡)
(11) 

 
𝜃𝑏 = 𝜋 + 2 ∗ 𝜃𝑖 − 4 ∗ 𝜃𝑡 (12) 

 

Figure 8: Comparison of the reflection scattering order (p=0) for the 

parameters: drop diameter=100um, flake diameter=60um, zenith 

angle α=0 deg, azimuthal angle β=0 deg, nt=1.343. RT – Ray Trac-

ing, DS – Debye Series. 
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Figure 11: Second-order scattering diagram for varying zenith angle:    

drop diameter=100um, flake diameter=60um, azimuthal angle α=0 

deg, nt =1.343, Z-Zenith angle, A-Azimuthal angle. 

Figure 12: Comparison of the first-order scattering for different di-

ameter of flake: drop diameter=100um, zenith angle α =0 deg, azi-

muthal angle β =0 deg, nt =1.343. 

Figure 13: Comparison of the second-order scattering for different 

diameter of flake: drop diameter=100um, zenith angle α =0 deg, 

azimuthal angle β =0 deg, nt =1.343. 

 

Figure 10: Ray path for second-order refraction scattering (a) Ray path for forward scattering (b) Ray path for backward 

scattering: drop diameter=100um, flake diameter=60um, zenith angle α=0 deg, azimuthal angle β=0 deg, nt=1.343. 

The previous results were obtained using a 

flake azimuthal angle of 0 deg and a zenith 

angle of 0 deg, as depicted in Figure 4. In the 

following, the azimuthal angle remains at 0 

deg, but the zenith angle varies from 30 deg to 

90 deg with an interval of 30 deg. The embed-

ded flake does not affect the reflection of the 

drop, therefore the reflection intensity at 0 deg 

scattering angle has been used as reference to 

normalize the scattering intensity from the 

second-order scattering. This normalized sec-

ond-order scattering for different zenith angles 

has been plotted in Figure 11. The scattering 

intensity in the backscatter direction, near the 

rainbow, is almost unaffected by the flake. 

This is because most incident rays intersect 

with the flake twice as shown in Figure 10b. 

Further scattering diagrams have been 

computed for zenith and azimuthal angles of 0 

deg but varying the size of the flake. The flake 

diameter is varied from 20 um to 60 um with 

an interval for 20 um. Figure 12 shows the 

scattering diagram for first-order refraction 

scattering. As expected, when the flake size 

becomes larger, the blocking angle of the first-

order scattering also becomes larger and the 

backward scattering becomes stronger, be-

cause of the total reflection from the flake.  

    Figure 13shows the scattering diagram for 

the second-order refraction scattering. For 

second-order scattering, as the flake size in-

creases the signal from backward scattering 

does not change much, the reason is also that 

most rays intersect with the flake twice, so the 

rays share the same exist point and exit the 

drop with same angle as if no flake exists. 

However, changing the flake size will affect 

the forward scattering of the second-order 

scattering. 
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    The total scattering diagram for varying the azimuthal angle is shown in Figure 14, when keeping the zenith 

angle constant. The total scattering diagrams for different azimuthal angles overlap with each other, so the total 

scattering amplitude does not change, when the zenith angle is constant at 90 deg and only the azimuthal angle 

varies. 

 
Figure 14: Total scattering diagram for varying azimuthal angle of the normal vector of the flake: drop diameter=100um, 

flake diameter=60um, zenith angle α=90 deg, nt =1.343. 

Figure 15 shows the simulated time-shift signal for the drop with an embedded flake. For comparison, the 

time-shift signal for a drop without a flake is also plotted; however the amplitude is almost indiscernible. Thus, 

when a flake is present, the corresponding time-shift signal has an extremely high intensity signal peak. This 

high intensity results because there is only total reflection along the ray path for the case of a flake, whereas for 

the pure drop, the intensity of second-order refraction decreases by the amount which leaves the drop as first-

order scattering. Although the peak for total reflection from the flake is strong, the signal from reflection and 

second-order refraction (p=2.2) remain the same. 

 
Figure 15: Simulated time-shift signal: drop diameter=100um, flake diameter=60um, zenith angle α=0 deg, azimuthal angle 

β=0 deg, nt =1.343 

Summary and Conclusions 

This study has shown how a reflecting circular flake (disk) inside a spherical drop can modify the light scat-

tered from the drop. A ray tracing approach has been used, allowing large drops to be considered, as encountered 

in, for example, paint sprays. These scattering characteristics have then been invoked to simulate signals as gen-

erated by a time-shift instrument, comparing signals with and without a flake embedded in the drop. The overall 

aim is to explore whether the time-shift signal contains sufficient information to not only yield the size and ve-

locity of the particle, but also whether a flake is present or not. 

From the results presented, it appears as though flake identification with the time-shift technique should be 

possible, because when a flake is present, an additional signal peak of very high amplitude is obtained in the 

backscatter direction, where typically the detectors of a time-shift instrument are placed. It appears that this 

conjecture may be valid independent of flake size, since during passage of the drop through the measurement 

volume, even smaller flakes will affect the scattering diagram. It is now necessary to explore over what ranges 

of zenith and azimuthal angles of flake orientation a strong ‘reflection’ peak exists in the time-shift signal. 

The next step of this study is to realize this situation in the laboratory by using a controlled flake embedment 

in drops of known size and to compare the obtained signals with the signals simulated in the present study.  
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