12th International Conference on Laser-Light and Interactions with Particles March 5th - 9th 2018, College Station (TX), USA

LIGHT SCATTERING FROM A DROP WITH AN **EMBEDDED SPHERICAL PARTICLE FOR** THE TIME-SHIFT TECHNIQUE

Lingxi Li^{1,2,*}, Simon Rosenkranz², Walter Schäfer² and Cameron Tropea¹

1. Technische Universität Darmstadt, Institute of Fluid Mechanics and Aerodynamics, Alarich-Weiss-Strasse 10, 64287 Darmstadt, Germany 2. AOM-Systems GmbH, Flughafenstrasse 15, 64347 Griesheim, Germany (*) li@sla.tu-darmstadt.de

Three-Dimensional Ray Tracing Technique (3DRT)

Advanced Optical Measurement Systems

This study is devoted to light scattering from drops with an embedded, reflecting particle, as would be expected in an encapsulation / coating process or with spraying of metallic paints. The present study falls within a broader effort to explore the possibility of utilizing the time-shift technique for such characterization tasks. Ray tracing is used, computing the trajectories of a large number of incident rays defined by an incident plane wave and superimposing all rays scattered in a given direction to result in a scattering diagram. Rays up to p=10 are used to compute the scattered light intensity field. Verification of the simulations is performed through comparison with selected, known solutions.

Light Scattering Diagram for Drop with an Embedded Particle

The position of the particle can be varied in x, y and z directions. The calculation results show that forward scattering is less sensitivity to changes of particle position in the z direction. The size of embedded particle has a significant influence on the forward scattering intensity.

Light Scattering Simulation for the Time-Shift Technique

I(z)Simulated Time-Shift Signal for different Size of Particle surface wave (short) 200 Drop Diameter=100um No Particle second order refraction (p=2.2) Particle Diameter=45um second order refraction (p=2.1) Particle Diameter=75um or Intensity 120 reflection (p=0) surface wave (long) S(t)Detector $\theta_i^{SW(long)} = -90^{\circ}$ $\theta_s = 150^{\circ}$ Second Order Refraction P=2.2 $\theta_{i}^{(p=0)} = -15^{\circ}$ m = 1.333Second Order Refraction P=2.1 50 $\theta_{i}^{(p=2.1)} = 32.4^{\circ}$ $\gamma(m, \theta_s) = 1.57$ Reflection P=0 $pol. = \perp$ $\theta_i^{(p=2.2)} = 80.4^{\circ}$ $\theta_i^{SW(short)} = 90^{\circ}$ -20 20 -60 60 -40 40 0 Y(um)

The ray tracing program can simulate the time-shift signal for a droplet passing through the measurement volume. In this case the incident wave is a highly focused Gauss beam (w=10µm). In this example, when the diameter of the particle is $45\mu m$, the signal of the scattering order p=2.1 vanishes. When the diameter of the particle is above $75\mu m$, both of the second order refraction p=2.1 and p=2.2 vanish, because the particle blocks the internal transmission of the light.

Philip Laven, "Simulation of rainbows, coronas, and glories by use of Mie theory," Appl. Opt. 42, 436-444 (2003)

Walter Schäfer and Cameron Tropea, "Time-shift technique for simultaneous measurement of size, velocity, and relative refractive index of transparent droplets or particles in a flow," Appl. Opt. 53, 588-597 (2014)