LIGHT SCATTERING FROM A DROP WITH AN EMBEDDED SPHERICAL PARTICLE FOR THE TIME-SHIITT TECHNIQUE

Lingxi Li ${ }^{1,2, *}$, Simon Rosenkranz², Walter Schäfer ${ }^{2}$ and Cameron Tropea ${ }^{1}$
1. Technische Universität Darmstadt, Institute of Fluid Mechanics and Aerodynamics, Alarich-Weiss-Strasse 10, 64287 Darmstadt, Germany
2. AOM-Systems GmbH, Flughafenstrasse 15, 64347 Griesheim, Germany
(*) li@sla.tu-darmstadt.de

Three-Dimensional Ray Tracing Technique (3DRT)

This study is devoted to light scattering from drops with an embedded, reflecting particle, as would be expected in an encapsulation coating process or with spraying of metallic paints. The present study falls within a broader effort to explore the possibility of utilizing the time-shift technique for such characterization tasks. Ray tracing is used, computing the trajectories of a large number of incident rays defined by an incident plane wave and superimposing all rays scattered in a given direction to result in a scattering diagram. Rays up to $\mathrm{p}=10$ are used to compute the scattered light intensity field. Verification of the simulations is performed through comparison with selected, known solutions.

Light Scattering Diagram for Drop with an Embedded Particle

 embedded particle has a significant influence on the forward scattering intensity.

Light Scattering Simulation for the Time-Shift Technique

The ray tracing program can simulate the time-shift signal for a droplet passing through the measurement volume. In this case the incident wave is a highly focused Gauss beam $(\mathrm{w}=10 \mu \mathrm{~m})$. In this example, when the diameter of the particle is $45 \mu \mathrm{~m}$, the signal of the scattering order $\mathrm{p}=2.1$ vanishes. When the diameter of the particle is above $75 \mu \mathrm{~m}$, both of the second order refraction $\mathrm{p}=2.1$ and $\mathrm{p}=2.2$ vanish, because the particle blocks the internal transmission of the light.

