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Abstract  
The time-shift technique, also known as the pulsed-displacement technique, is re-visited as a means of 

measuring size, velocity and relative refractive index of spherical, non-transparent particles. Building on the 

basic measurement principle, several new innovations are introduced, making the technique significantly more 

attractive for use outside of the laboratory. These include validation criteria for two-detector arrangements, and 

approaches for achieving higher size bandwidths, in particular lower measurable sizes. However, the main 

novelty introduced in this contribution is the ability to measure non-transparent droplets. Such droplets are quite 

common, for example in spray drying processing or in paint sprays. 

In this contribution the basic working principle of the time-shift techniques will be reviewed, followed by 

guidelines for the optical layout. Example measurements are presented. 

Introduction
The characterization of spherical, transparent particles in terms of size, velocity and possibly relative 

refractive index is of major interest in a variety of applications, but especially when investigating sprays of pure 

liquids. Counting techniques, i.e. techniques which measure and count individual droplets, are often desirable 

over integrating techniques such as the laser diffraction technique (LDT), since the velocity information, 

together with the counts can yield flux densities and concentration estimates. Several techniques fulfill these 

expectations, in particular direct imaging and interferometric techniques, such as the phase Doppler technique, 

holography, rainbow refractometry or interferometric particle imaging. Available techniques for this purpose 

have been recently summarized in a review article (1). 

However also the time-shift (TS) technique is an interesting candidate in this respect, and for several reasons 

there are very good grounds to re-visit this technique with the intention of making it more suitable for practical 

applications. One motivation is that the TS technique does not require coherent light and can therefore take 

advantage of low-cost, high power light sources which have recently become available. Furthermore, the TS 

technique can be optically configured to work in the near backscatter, allowing transmitting and receiving optics 

to be aligned through a single optical access to the measurement position. This immediately opens the possibility 

of a probe construction, i.e. all optical components in a single housing; hence achieving a higher degree of 

robustness. 

The time shift technique itself is not new, its origins go back to the Ph.D. thesis of Semidetnov in 1985 (2). 

Hess and Wood (3) presented several different optical configurations of the time-shift technique, all operating in 

forward scatter, i.e. employing scattered light from reflection and first-order refraction. One focus of their 

development was to enlarge the measurable size range, especially for smaller droplets. In their instrument 

velocity was measured using the laser Doppler or the time-of-flight technique. In their study they called this 

technique the pulse displacement technique. Lin et al. (4) also worked in forward scatter and employed three 

illuminating light sheets, extending the measurement capability to include relative refractive index. In 

Damaschke et al. (5) and Albrecht et al (6) configurations suitable for backscatter detection were introduced, 

enabling more compact optical arrangements and easier optical access to the measurement position, while at the 

same time enabling size and refractive index to be obtained using only one illuminating beam. The laser Doppler 

technique was used for velocity measurement. Damaschke et al. also examined the sensitivity of the time-shift 

technique to non-sphericity of the scattering particle as well as limitations for small particle sizing.  

It can be noted that the distinguishing feature of the time-shift technique compared to other techniques for 

size and velocity measurements of particles is the fact that the time-shift technique uses a shaped beam, meaning 

that the intensity variation of the beam varies considerably over the diameter of the particle to be measured. 

Hence, the time-shift technique utilizes a fundamentally different measurement principle then for instance the 

grating anemometer introduced by Semiat and Dukler (7) or Cartellier (8). The condition of a shaped beam can 

naturally arise, especially with larger particles and/or bubbles, and a technique closely related to the time-shift 

technique has been introduced by Brankovic et al. (9), known also as the triple-peak technique (Yu and Varty 

(10)). These realizations have also relied on the laser Doppler technique for velocity measurement. Indeed, these 

and several other variations of this technique (11) can be considered special cases of the time-shift technique. All 

of these techniques assume sphericity of the particle. 

However, general principles for optically configuring the time-shift instrument for a given application 

remain lacking as do validation strategies for enabling the technique to be used in situations with higher particle 
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